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Introduction

Convex optimization

min
x∈D

f (x) (1)

where f (x) and D are convex.

Quadratic program

min
Ax≤b

xTPx (2)

where P � 0 for a convex program.
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Log barrier method

Aim
To make inequality constraint implicit in the objective function.

Indicator function

I−(u) =

{
0; u ≤ 0

∞; u > 0
(3)

Approximate indicator function (Log barrier function)

Î−(u) = −(1/t)log(−u) (4)

dom(Î−) = −R++
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Approximate log barrier function

Figure 1: Log barrier function for t = 0.2, 1, 10
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Support Vector Machine

Given a set of linearly separable data points, find a separting
hyperplane that maximizes the margin between itself and the
nearest data points.

(Definition) Margin

Twice of minimum distance between the separating hyperplane and
data points.
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Support Vector Machine

Figure 2: Separating hyperplane for linearly separable data points
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Cost function for SVM

Given a set of linearly separable data points and labels (xi , yi ),
finding the maximum margin separating hyperplane is equivalent to
the constrained problem:

Quadratic program for SVM

min
w ,b
‖w‖2

s.t. yi (〈w , xi 〉+ b) ≥ 1, ∀i
(5)

where 〈w , x〉+ b = 0 is the equation of hyperplane (decision
boundary).
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SVM using log-barrier method

Quadratic program for SVM

min
w ,b
‖w‖2

s.t. yi (〈w , xi 〉+ b) ≥ 1, ∀i
(6)

Optimization problem using log barrier method

min
w ,b

[
‖w‖2 − (1/t)

∑
i

log(−1 + yi (〈w , xi 〉+ b))

]
(7)

where t ∈ R+
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Feasible start point

I Presence of logarithm in objective function restricts start of
optimization from any random initial point

I Need for additional mechanism to find a feasible starting point

Optimization problem for a feasible start point

min
w ,b,s

s

s.t. (1− yi (〈w , xi 〉+ b)) ≤ s; ∀i
(8)

I Can put a lower bound on s to prevent unnecessary
computation
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Algorithm

I Fetch the dataset

I Identify a feasible starting point for SVM model (using a log
barrier method) (7) using (8)

I Run the optimization problem (7) with the obtained starting
point
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Result

Figure 3: Separating hyperplane for a linearly separable 2D dataset using
log barrier method (t = 1)

anuragg.in@gmail.com



Result

Difficult to minimize the optimization problem (7) for large value
of t in one step since its Hessian varies rapidly near the boundary
of the feasible set.

Figure 4: Separating hyperplane for a linearly separable 2D dataset using
log barrier method (t = 10)
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Central path

(Defintion) Central path

Let x∗(t), t > 0 be the solution of

min t(f0(x)) + φ(x)
s.t. Ax = b

(9)

Then the central path associated with it is defined as the set of
points x∗(t), t > 0 which we call the set central points.
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Result

Figure 5: Separating hyperplane for a linearly separable 2D dataset using
log barrier method (t = 10) by incorporating the concept of central path
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Result

Figure 6: Central path of separating hyperplane (t = 0.2, 1, 10) for a
linearly separable dataset
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Comparison

Exact method[
−1 2

] [x
y

]
+ 1 = 0

Figure 7: SVM using exact method

Log barrier method

[
−1.0024 2.0994

] [x
y

]
+ 1.0204 = 0

Figure 8: SVM using log barrier
method and central path (t = 10)
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Soft margin SVM (Motivation)

When a dataset is not linearly separable due to insufficient
features, noise and spurious data.

Figure 9: Soft margin to increase
margin

Figure 10: Soft margin to handle
linearly inseparable dataset
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Soft margin SVM

Soft margin SVM classification

min
w ,b,
ξi∈R+

[
‖w‖2 + C

n∑
i

ξi

]
s.t. [1− yi (〈w , xi 〉+ b)] ≤ ξi ; ∀i

(10)

where C is a regularization/penalty parameter

Now, we have another set of inequalities that are introduced by
non-negativity condition on ξi , ∀i . This has to be separately
handled by another log barrier function.
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Soft margin SVM using log barrier method

Soft margin SVM classification (log barrier method)

(11)

min
w ,b,
ξi∈R+

[
‖w‖2 + C

n∑
i

ξi

− 1

t

∑
i

(log(−1 + yi (〈w , xi 〉+ b) + ξi ) + log(ξi ))

]

where C is a reqularization/penalty parameter

Optimization problem for finding the feasible starting point
remains the same. Only the minimum value of s turns out to be
negative for linearly inseparable dataset. This can be handled by
appropriately chosing the initial values of ξi∀i .
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Result

Figure 11: Separating hyperplane for a linearly inseparable data using log
barrier method (t = 10; C = 1)
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Result

Figure 12: Separating hyperplane for a linearly inseparable data using log
barrier method (t = 0.2, 1, 10, 100; C = 1) by incorporating the concept
of central path [ Remark: Central path method ultimately converges to
exact method solution if the step size for t is adequate ]
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Comparison

Exact method[
−0.2222 0.8889

] [x
y

]
−0.1111 = 0

Figure 13: SVM using exact
method

Log barrier method

[
−0.2364 0.8889

] [x
y

]
− 0.1199 = 0

Figure 14: SVM using log barrier
method and central path (t = 100)
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Scope

I Kernel operators

I Dual optimization problem
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