Support Vector Machine (SVM) A log-barrier approach

Anurag¹

¹Research Scholar Electrical Engineering Indian Institute of Science, Bangalore

Convex optimization and applications 2 May, 2018

Introduction

Convex optimization

$$\min_{x \in D} f(x) \tag{1}$$

where f(x) and D are convex.

Quadratic program

$$\min_{Ax \le b} x^T P x \tag{2}$$

where $P \succeq 0$ for a convex program.

Log barrier method

Aim

To make inequality constraint implicit in the objective function.

Indicator function

$$I_{-}(u) = \begin{cases} 0; u \le 0 \\ \infty; u > 0 \end{cases}$$
 (3)

Approximate indicator function (Log barrier function)

$$\hat{l}_{-}(u) = -(1/t)log(-u)$$
 (4)
 $dom(\hat{l}_{-}) = -\mathbb{R}_{++}$

Approximate log barrier function

Figure 1: Log barrier function for t = 0.2, 1, 10

Support Vector Machine

Given a set of linearly separable data points, find a separting hyperplane that maximizes the margin between itself and the nearest data points.

(Definition) Margin

Twice of minimum distance between the separating hyperplane and data points.

Support Vector Machine

Figure 2: Separating hyperplane for linearly separable data points

Cost function for SVM

Given a set of linearly separable data points and labels (x_i, y_i) , finding the maximum margin separating hyperplane is equivalent to the constrained problem:

Quadratic program for SVM

$$\min_{\substack{w,b\\ w,b}} ||w||^2$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1, \ \forall i$

where $\langle w, x \rangle + b = 0$ is the equation of hyperplane (decision boundary).

SVM using log-barrier method

Quadratic program for SVM

$$\min_{\substack{w,b\\ w,b}} ||w||^2$$
s.t. $y_i(\langle w, x_i \rangle + b) \ge 1, \ \forall i$

Optimization problem using log barrier method

$$\min_{w,b} \left[\|w\|^2 - (1/t) \sum_{i} log(-1 + y_i(\langle w, x_i \rangle + b)) \right]$$
where $t \in \mathbb{R}_+$

Feasible start point

- ► Presence of logarithm in objective function restricts start of optimization from any random initial point
- ▶ Need for additional mechanism to find a feasible starting point

Optimization problem for a feasible start point

$$\min_{\substack{w,b,s\\ s.t.}} s$$

$$s.t. (1 - y_i(\langle w, x_i \rangle + b)) \le s; \forall i$$
(8)

 Can put a lower bound on s to prevent unnecessary computation

Algorithm

- ► Fetch the dataset
- ▶ Identify a feasible starting point for SVM model (using a log barrier method) (7) using (8)
- ► Run the optimization problem (7) with the obtained starting point

Figure 3: Separating hyperplane for a linearly separable 2D dataset using log barrier method $(\mathsf{t}=1)$

Difficult to minimize the optimization problem (7) for large value of t in one step since its Hessian varies rapidly near the boundary of the feasible set.

Figure 4: Separating hyperplane for a linearly separable 2D dataset using log barrier method (t=10)

Central path

(Defintion) Central path

Let $x^*(t)$, t > 0 be the solution of

$$\min_{x \in \mathcal{L}} t(f_0(x)) + \phi(x)$$

$$s.t. \ Ax = b$$
(9)

Then the central path associated with it is defined as the set of points $x^*(t)$, t > 0 which we call the set central points.

Figure 5: Separating hyperplane for a linearly separable 2D dataset using log barrier method (t=10) by incorporating the concept of central path

Figure 6: Central path of separating hyperplane ($t=0.2,\,1,\,10$) for a linearly separable dataset

Comparison

Exact method

$$\begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + 1 = 0$$

Figure 7: SVM using exact method

Log barrier method

$$\begin{bmatrix} -1.0024 & 2.0994 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + 1.0204 = 0$$

Figure 8: SVM using log barrier method and central path (t = 10)

Soft margin SVM (Motivation)

When a dataset is not linearly separable due to insufficient features, noise and spurious data.

Figure 9: Soft margin to increase margin

Figure 10: Soft margin to handle linearly inseparable dataset

Soft margin SVM

Soft margin SVM classification

$$\min_{\substack{w,b,\\\xi_i \in \mathbb{R}_+}} \left[\|w\|^2 + C \sum_{i=1}^n \xi_i \right]
s.t. \left[1 - y_i (\langle w, x_i \rangle + b) \right] \le \xi_i; \ \forall i$$
(10)

where C is a regularization/penalty parameter

Now, we have another set of inequalities that are introduced by non-negativity condition on ξ_i , $\forall i$. This has to be separately handled by another log barrier function.

Soft margin SVM using log barrier method

Soft margin SVM classification (log barrier method)

$$\min_{\substack{w,b,\\\xi_i \in \mathbb{R}_+}} \left[\|w\|^2 + C \sum_{i}^{n} \xi_i - \frac{1}{t} \sum_{i} (\log(-1 + y_i(\langle w, x_i \rangle + b) + \xi_i) + \log(\xi_i)) \right]$$
(11)

where C is a reqularization/penalty parameter

Optimization problem for finding the feasible starting point remains the same. Only the minimum value of s turns out to be negative for linearly inseparable dataset. This can be handled by appropriately chosing the initial values of $\xi_i \forall i$.

Figure 11: Separating hyperplane for a linearly inseparable data using log barrier method ($t=10;\,C=1$)

Figure 12: Separating hyperplane for a linearly inseparable data using log barrier method ($t=0.2,\ 1,\ 10,\ 100;\ C=1$) by incorporating the concept of central path [**Remark:** Central path method ultimately converges to exact method solution if the step size for t is adequate]

Comparison

Exact method

$$\begin{bmatrix} -0.2222 & 0.8889 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 0.1111 = 0$$

Figure 13: SVM using exact method

Log barrier method

$$\begin{bmatrix} -0.2364 & 0.8889 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - 0.1199 = 0$$

Figure 14: SVM using log barrier method and central path (t = 100)

Scope

- ► Kernel operators
- ► Dual optimization problem

References

S. Boyd and L. Vandenberghe.

Convex optimization Cambridge University Press, 2004.

A. Zisserman

Lectures on Machine Learning, 2015.

http://www.robots.ox.ac.uk/~az/lectures/ml/ lect2. pdf.