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Introduction

Convex optimization

)r(neiB f(x) (1)

where f(x) and D are convex.

Quadratic program

min x| Px (2)
Ax<b

where P > 0 for a convex program.



Log barrier method

Aim
To make inequality constraint implicit in the objective function.

0;u<0
I_(u) :{ (3)

oo;u>0

Approximate indicator function (Log barrier function)

I (u) = —(1/t)log(—u) (4)
dom(I)

Ryt



Approximate log barrier function
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Figure 1: Log barrier function for t = 0.2, 1, 10
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Support Vector Machine

Given a set of linearly separable data points, find a separting
hyperplane that maximizes the margin between itself and the
nearest data points.

(Definition) Margin
Twice of minimum distance between the separating hyperplane and
data points.
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\‘e\ Margin hyperplane
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Support Vector Machine

Figure 2: Separating hyperplane for linearly separable data points
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Cost function for SVM

Given a set of linearly separable data points and labels (x;, y;),
finding the maximum margin separating hyperplane is equivalent to
the constrained problem:

Quadratic program for SVM

min||w|
w,b (5)
s.t. yi({w,x;) + b) > 1, Vi

where (w, x) + b = 0 is the equation of hyperplane (decision
boundary).
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SVM using log-barrier method

Quadratic program for SVM

minHWH2
s ©

s.t. yi({w,x;) + b) > 1, Vi

Optimization problem using log barrier method

min lwl® — (1/t) Z log(—=1+ yi({w, xi) + b)) (7)

!

where t € R4



Feasible start point

» Presence of logarithm in objective function restricts start of
optimization from any random initial point

» Need for additional mechanism to find a feasible starting point

Optimization problem for a feasible start point

min s
w,b,s (8)
s.t. (1 — yi({w, x;) + b)) <'s; Vi

» Can put a lower bound on s to prevent unnecessary
computation
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Algorithm

» Fetch the dataset

» |dentify a feasible starting point for SVM model (using a log
barrier method) (7) using (8)

» Run the optimization problem (7) with the obtained starting
point
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Figure 3: Separating hyperplane for a linearly separable 2D dataset using

log barrier method (t = 1)
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Difficult to minimize the optimization problem (7) for large value
of t in one step since its Hessian varies rapidly near the boundary
of the feasible set.
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Figure 4: Separating hyperplane for a linearly separable 2D dataset using
log barrier method (t = 10)
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Central path

(Defintion) Central path
Let x*(t), t > 0 be the solution of

min t(fo(x)) + ¢(x)
s.t? Ax=0b ©)

Then the central path associated with it is defined as the set of
points x*(t), t > 0 which we call the set central points.
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Figure 5: Separating hyperplane for a linearly separable 2D dataset using
log barrier method (t = 10) by incorporating the concept of central path
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Figure 6: Central path of separating hyperplane (t = 0.2, 1, 10) for a
linearly separable dataset

anuragg.in@gmail.com




Comparison

Exact method
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Figure 7: SVM using exact method

Log barrier method
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Figure 8: SVM using log barrier
method and central path (t = 10)
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Soft margin SVM (Motivation)

When a dataset is not linearly separable due to insufficient
features, noise and spurious data.
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Figure 9: Soft margin to increase Figure 10: Soft margin to handle
margin linearly inseparable dataset
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Soft margin SVM

Soft margin SVM classification

rvallg !HW” + CZ&]
§iERY !
s.t. [1—yi({w,x;) + b)] < &; Vi

where C is a regularization/penalty parameter

(10)

Now, we have another set of inequalities that are introduced by
non-negativity condition on &; ,Vi. This has to be separately
handled by another log barrier function.



Soft margin SVM using log barrier method

Soft margin SVM classification (log barrier method)

[uwrz = CZ&

§,ER+ (11)
_ ? Z (/og(—]_ —+ yi(<W,Xi> + b) + gl) + /Og(f,))]

where C is a reqularization/penalty parameter

Optimization problem for finding the feasible starting point
remains the same. Only the minimum value of s turns out to be
negative for linearly inseparable dataset. This can be handled by
appropriately chosing the initial values of &;Vi.
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Figure 11: Separating hyperplane for a linearly inseparable data using log

barrier method (t = 10; C = 1)

anuragg

in@gmail.com



Figure 12: Separating hyperplane for a linearly inseparable data using log
barrier method (t = 0.2, 1, 10, 100; C = 1) by incorporating the concept
of central path [ Remark: Central path method ultimately converges to
exact method solution if the step size for t is adequate |
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Comparison

Exact method Log barrier method
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Figure 13- SVM using exact Figure 14: SVM Using |0g barrier

method method and central path (t = 100)
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» Kernel operators

» Dual optimization problem
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